obv平均线-obv平均线公式

2023-02-26 技术指标 0次阅读 admin

关于obv平均线内容导航:

1、obv平均线


df['obv_ma'] = df['obv'].rolling(window=5).mean()
#计算macd
df['diff'], df['dea'], df['macd'] = talib.MACD(df['close'].values,
fastperiod=12, slowperiod=26, signalperiod=9)
#计算rsi
df['rsi'] = talib.RSI(df['close'].values, timeperiod=14)
#计算kdj
df['k'], df['d'], df['j'] = talib.STOCH(df['high'].values,
df['low'].values,
df['close'].values,
fastk_period=9,
slowk_period=3,
slowd_period=3)
#计算cci
df['cci'] = talib.CCI(df['high'].values,
df['low'].values,
df['close'].values, timeperiod=14)
#计算atr
df['atr'] = talib.ATR(df['high'].values,
df['low'].values,
df['close'].values, timeperiod=14)
#计算boll
df['upper'], df['middle'], df['lower'] = talib.BBANDS(df['close'].values,
timeperiod=20,
nbdevup=2,
nbdevdn=2,
matype=0)
#计算wr
df['wr'] = talib.WILLR(df['high'].values,
df['low'].values,
df['close'].values, timeperiod=14)
#计算roc
df['roc'] = talib.ROC(df['close'].values, timeperiod=10)
#计算trix
df['trix'] = talib.TRIX(df['close'].values, timeperiod=30)
#计算dmi
df['plus_di'], df['minus_di'], df['adx'], df['adxr'] = talib.ADX(df['high'].values,
df['low'].values,
df['close'].values,
timeperiod=14)
#计算vr
df['vr'] = talib.ATR(df['high'].values,
df['low'].values,
df['close'].values, timeperiod=26)
#计算cr
df['cr'] = talib.NATR(df['high'].values,
df['low'].values,
df['close'].values, timeperiod=26)
#计算ar
df['ar'] = talib.AROONOSC(df['high'].values,
df['low'].values, timeperiod=14)
#计算sar
df['sar'] = talib.SAR(df['high'].values,
df['low'].values,
acceleration=0.02, maximum=0.2)
#计算dma
df['dif'], df['ama'] = talib.DEMA(df['close'].values, timeperiod=30)
#计算tma
df['tma'] = talib.TEMA(df['close'].values, timeperiod=30)
#计算er
df['er'] = talib.ER(df['high'].values,
df['low'].values,
df['close'].values, timeperiod=14)
#计算mi
df['mi'] = talib.MFI(df['high'].values,
df['low'].values,
df['close'].values,
df['volume'].values, timeperiod=14)
#计算bias
df['bias'] = talib.BIAS(df['close'].values, timeperiod=14)
#计算psar
df['psar'] = talib.SAREXT(df['high'].values,
df['low'].values,
startvalue=0,
offsetonreverse=0,
accelerationinitlong=0,
accelerationlong=0,
accelerationmaxlong=0,
accelerationinitshort=0,
accelerationshort=0,
accelerationmaxshort=0)
#计算vpt
df['vpt'] = talib.VPT(df['close'].values, df['volume'].values)
#计算ma
df['ma5'] = talib.MA(df['close'].values, timeperiod=5, matype=0)
df['ma10'] = talib.MA(df['close'].values, timeperiod=10, matype=0)
df['ma20'] = talib.MA(df['close'].values, timeperiod=20, matype=0)
df['ma30'] = talib.MA(df['close'].values, timeperiod=30, matype=0)
df['ma60'] = talib.MA(df['close'].values, timeperiod=60, matype=0)
#计算ema
df['ema5'] = talib.EMA(df['close'].values, timeperiod=5)
df['ema10'] = talib.EMA(df['close'].values, timeperiod=10)
df['ema20'] = talib.EMA(df['close'].values, timeperiod=20)
df['ema30'] = talib.EMA(df['close'].values, timeperiod=30)
df['ema60'] = talib.EMA(df['close'].values, timeperiod=60)
#计算sma
df['sma5'] = talib.SMA(df['close'].values, timeperiod=5)
df['sma10'] = talib.SMA(df['close'].values, timeperiod=10)
df['sma20'] = talib.SMA(df['close'].values, timeperiod=20)
df['sma30'] = talib.SMA(df['close'].values, timeperiod=30)
df['sma60'] = talib.SMA(df['close'].values, timeperiod=60)
#计算wma
df['wma5'] = talib.WMA(df['close'].values, timeperiod=5)
df['wma10'] = talib.WMA(df['close'].values, timeperiod=10)
df['wma20'] = talib.WMA(df['close'].values, timeperiod=20)
df['wma30'] = talib.WMA(df['close'].values, timeperiod=30)
df['wma60'] = talib.WMA(df['close'].values, timeperiod=60)
#计算t3
df['t3'] = talib.T3(df['close'].values, timeperiod=5, vfactor=0)
#计算dema
df['dema'] = talib.DEMA(df['close'].values, timeperiod=30)
#计算tema
df['tema'] = talib.TEMA(df['close'].values, timeperiod=30)
#计算trima
df['trima'] = talib.TRIMA(df['close'].values, timeperiod=30)
#计算kama
df['kama'] = talib.KAMA(df['close'].values, timeperiod=30)
#计算mama
df['mama'], df['fama'] = talib.MAMA(df['close'].values,
fastlimit

2、obv平均线如何设置

3、obv平均线公式

展开全部


  obv指标

  OBV(平衡成交量法、累积能量线),俗称能量潮,是由格兰维尔于1963年提出。能量潮是将成交量数量化,制成趋势线,配合股价趋势线,从价格的变动及成交量的增减关系,推测市场气氛。其主要理论基础是市场价格的变化必须有成交量的配合,股价的波动与成交量的扩大或萎缩有密切的关连。通常股价上升所需的成交量总是较大;下跌时,则成交量总是较小。价格升降而成交量不相应升降,则市场价格的变动难以为继。

  计算方法
  [编辑本段]
  以某日为基期,逐日累计每日上市股票总成交量,若隔日指数或股票上涨,则基期OBV加上本日成交量为本日OBV。隔日指数或股票下跌,则基期OBV减去本日成交量为本日OBV。一般来说,只是观察OBV的升降并无多大意义,必须配合K线图的走势才有实际的效用。

  参数设置
  [编辑本段]
  OBV线无参数。在本系统中,可设置OBV的平均天数,就可以显示出OBV平均线,有助于判明OBV的趋势。

  应用法则
  [编辑本段]
  1、当股价上升而OBV线下降,表示买盘无力,股价可能会回跌。

  2、股价下降时而OBV线上升,表示买盘旺盛,逢低接手强股,股价可能会止跌回升。

  3、OBV线缓慢上升,表示买气逐渐加强,为买进信号。

  4、OBV线急速上升时,表示力量将用尽为卖出信号。

  5、OBV线对双重顶第二个高峰的确定有较为标准的显示,当股价自双重顶第一个高峰下跌又再次回升时,如果OBV线能够随股价趋势同步上升且价量配合,则可持续多头市场并出现更高峰。相反,当股价再次回升时OBV线未能同步配合,却见下降,则可能形成第二个顶峰,完成双重顶的形态,导致股价反转下跌。

  6、OBV线从正的累积数转为负数时,为下跌趋势,应该卖出持有股票。反之,OBV线从负的累积数转为正数时,应该买进股票。

  7、OBV线最大的用处,在于观察股市盘局整理后,何时会脱离盘局以及突破后的未来走势,OBV线变动方向是重要参考指数,其具体的数值并无实际意义。

  研 判
  [编辑本段]
  (1)OBV线系依据成交量的变化统计绘制而成,因此OBV线属于技术性分析与属于经济性的基本分析无关。
  (2)OBV线为股市短期波动的重要判断方法,但运用OBV线应配合股价趋势予以研判分析。
  (3)OBV线能帮助确定股市突破盘局后的发展方向。
  (4)OBV的走势,可以局部显示出市场内部主要资金的移动方向,显示当期不寻常的超额成交量是徘徊于低价位还是在高价位上产生,可使技术分析者领先一步深入了解市场内部原因。
  (5)OBV线对双重顶(M头)第二个高峰的确定有较为标准的显示,当股价自双重顶第一个高峰下跌又再次回升时,如果OBV线能随股价趋势同步上升,价量配合则可能持续多头市场并出现更高峰,但是相反的,股价再次回升时,OBV线未能同步配合,却见下降,则可能即将形成第二个峰顶完成双重顶的型态,并进一步导致股价上涨反转回跌。
  (6)OBV线适用范围比较偏向于短期进出,与基本分析丝毫无关。同时OBV也不能有效反效反映当期市场的转手情况。
obv平均线公式

猜你感兴趣: obv平均线