wr指标与kdj-wr指标与kdj指标的经典结合

2023-04-30 技术指标 0次阅读 admin
wr指标与kdj.jpg

关于wr指标与kdj的问题,我们总结了以下几点,给你解答:

wr指标与kdj指标的经典结合


wr指标与kdj指标的经典结合

1. 虽然三者都是以超买超卖为核心指标,但KDJ与RSI指标更能直观展示行情的走势(即rsi与kdj两指标走高代表现在会有上涨,走低会下跌)
2. WR指标在低位即买入信号,代表要上涨,WR指标在高位即卖出信号,代表下跌
3. 2者从不同的角度表达而已,不是你所说的背离
建议你就结合KDJ与boll判断区间,KDJ判断入场时间吧,你说的三个KDJ最为敏锐
如果你有兴趣,可以共同交流
理论上说kdj反应更灵敏,rsi次之。

wr指标与kdj


wr指标与kdj

指标
# 参数:
# df:择时函数所需的数据
# m1:短期均线参数
# m2:长期均线参数
# m3:rsi参数
# m4:wr参数
# m5:kdj参数
# 返回:
# df:择时函数所需的数据
# 增加的指标:
# ma_short:短期均线
# ma_long:长期均线
# rsi:rsi指标
# wr:wr指标
# k:kdj指标
# d:kdj指标
# j:kdj指标
# 增加的信号:
# ma_signal:均线信号
# rsi_signal:rsi信号
# wr_signal:wr信号
# kdj_signal:kdj信号
# 增加的择时信号:
# signal:择时信号
# 增加的择时函数:
# select_time:择时函数
# 增加的择时函数参数:
# m1:短期均线参数
# m2:长期均线参数
# m3:rsi参数
# m4:wr参数
# m5:kdj参数
# 增加的择时函数返回:
# signal:择时信号
# 增加的择时函数参数:
# m1:短期均线参数
# m2:长期均线参数
# m3:rsi参数
# m4:wr参数
# m5:kdj参数
# 增加的择时函数返回:
# signal:择时信号
# 增加的择时函数参数:
# m1:短期均线参数
# m2:长期均线参数
# m3:rsi参数
# m4:wr参数
# m5:kdj参数
# 增加的择时函数返回:
# signal:择时信号
df['ma_short'] = talib.SMA(df['close'].values, m1)
df['ma_long'] = talib.SMA(df['close'].values, m2)
df['rsi'] = talib.RSI(df['close'].values, m3)
df['wr'] = talib.WILLR(df['high'].values, df['low'].values, df['close'].values, m4)
df['k'], df['d'] = talib.STOCH(df['high'].values, df['low'].values, df['close'].values, m5, m5)
df['j'] = 3 * df['k'] - 2 * df['d']
df['ma_signal'] = np.where(df['ma_short'] > df['ma_long'], 1, 0)
df['rsi_signal'] = np.where(df['rsi'] > 50, 1, 0)
df['wr_signal'] = np.where(df['wr'] < -50, 1, 0)
df['kdj_signal'] = np.where(df['k'] > df['d'], 1, 0)
df['signal'] = df['ma_signal'] + df['rsi_signal'] + df['wr_signal'] + df['kdj_signal']
df['signal'] = np.where(df['signal'] > 2, 1, 0)
df['signal'] = np.where(df['signal'] < 2, -1, df['signal'])
df['signal'] = np.where(df['signal'] == 2, 0, df['signal'])
df['signal'] = df['signal'].shift(1)
df['signal'] = np.where(df['signal'] == -1, 0, df['signal'])
df['signal'] = np.where(df['signal'] == 1, 1, df['signal'])
df['signal'] = np.where(df['signal'] == 0, 0, df['signal'])
df['signal'] = df['signal'].shift(1)
df['signal'] = np.where(df['signal'] == -1, 0, df['signal'])
df['signal'] = np.where(df['signal'] == 1, 1, df['signal'])
df['signal'] = np.where(df['signal'] == 0, 0, df['signal'])
df['signal'] = df['signal'].shift(1)
df['signal'] = np.where(df['signal'] == -1, 0, df['signal'])
df['signal'] = np.where(df['signal'] == 1, 1, df['signal'])
df['signal'] = np.where(df['signal'] == 0, 0, df['signal'])
df['signal'] = df['signal'].shift(1)
df['signal'] = np.where(df['signal'] == -1, 0, df['signal'])
df['signal'] = np.where(df['signal'] == 1, 1, df['signal'])
df['signal'] = np.where(df['signal'] == 0, 0, df['signal'])
df['signal'] = df['signal'].shift(1)
df['signal'] = np.where(df['signal'] == -1, 0, df['signal'])
df['signal'] = np.where(df['signal'] == 1, 1, df['signal'])
df['signal'] = np.where(df['signal'] == 0, 0, df['signal'])
df['signal'] = df['signal'].shift(1)
df['signal'] = np.where(df['signal'] == -1, 0, df['signal'])
df['signal'] = np.where(df['signal'] == 1, 1, df['signal'])
df['signal'] = np.where(df['signal'] == 0, 0, df['signal'])
df['signal'] = df['signal'].shift(1)
df['signal'] = np.where(df['signal'] == -1, 0, df['signal'])
df['signal'] = np.where(df['signal'] == 1, 1, df['signal'])
df['signal'] = np.where(df['signal'] == 0, 0, df['signal

wr指标与kdj指标结合


wr指标与kdj指标结合

你把WR货民保均态律指标翻转(右键勾选“翻转坐标”),和KDJ对应了看,就很清楚了。
但要注意,KDJ和WR指标,2个都不是很精准的,发出的信号过多,适合短线操作
WR一般只和RSI 快鲜、TMT配合,效果展信压比较好

猜你感兴趣: wr指标与kdj
wr指标与kdj指标结合-wr指标和kdj

wr指标与kdj指标结合-wr指标和kdj

wr指标与kdj指标结合-wr指标和kdj的关系..

2023-04-28 0次阅读